Introducing

Business Logic

Drools s

)y Mario Fusco
ed Hat - Senior Software Enginee o
Q. redhat [

nfusco@redhat.com '.‘.BO‘SS

KIE - Knowledge Is Everything

N

(DptaF*lanner) (Drools) (UberFire) (jBPM)

\ Guvnaor /
(Drools-WB iBPM-NG-Con su@

RED HAT JBOSS

BRMS

A single, integrated, certified distribution for Business Rules
Management and Complex Event Processing, based on open
source community projects:

Boss
jcg%mumty

RED HAT JBOSS BRMS

Drools
REPOSITORY
EX e rt MODELING TOOLS git' Version
Authoring, validation, testing, deployment management
Drools DEVELOPMENT COMPLEX EVENT MANAGEMENT
. TOOLS BUSINESS RULES PROCESSING TOOLS
USIOni’ Red Hat JBoss Declarative, inference rule execution Temporal reasoning,
Developer Studio sliding window

Drools CONTAINER
G uvnor]lu_[Stand alone JVM, web container, full EE container

Y

What a rule-based program is

A rule-based program is made up of discrete rules,
each of which applies to some subset of the problem

It is simpler, because you can concentrate on the
rules for one situation at a time

It can be more flexible in the face of fragmentary or
poorly conditioned inputs

Used for problems involving control, diagnosis,
prediction, classification, pattern recognition ... in
short, all problems without clear algorithmic
solutions

Declarative , Imperative

(What to do)V (How to do it)

Advantages of Declarative
Programming

Easier to understand - It is more likely for a technically skilled
business analyst to verify, validate or even change a rule than a
piece of Java code

Improved maintainability » We don't care about how to
implement a solution only what needs to be done to solve a
problem

Deals with evolving complexity - It's easier to modify a rule
than a Java program and to determine the impact of this change
on the rest of the application

Modularity —» Each rule models an isolated and small portion of
your business logic and is not part of a monolithic program

Requirements can be more naturally translated into rules

Clear separation of business logic from the rest of the
system

When should you use a Rule
Engine?

- The problem is beyond any obvious algorithmic
solution or it isn't fully understood

> The logic changes often

- Domain experts (or business analysts) are readily
available, but are nontechnical

- You want to isolate the key parts of your business
logic, especially the really messy parts

How a rule-based system works

Inference Engine o (fact £1)
v (fact f2)
y’/ {fact £3)
- T
Pattern Matcher E\ Work‘r'ng Memﬂf}:
-\'\.
y \1. {rule r3)
. e _ \ {rule rl)
(t1, £2) rl (rule r2)
(ftZ2, t£3) r2
Agenda
Rule Base
¥

Execution Engine

(F1, £2) rl

|
Rule's anatomy
Quotes on Rule names are
:! optional if the rule name has]
rule “<name>"
<attribute> <vadalkeze

<int>
agenda-group \

against objects in

the Working <string>
LHS> no-loop
then <boolean>
auto-focus
<RHS> <boolean>
end <long>

Code executed
when a match is
found

Imperative vs Declarative

[A method must be called pecific
directly passing of
{

public void helloMark(Person person
if (person.getName().equals(“mark”)
System.out.println(“Hello Mark”);

}

} Rules can never be called]
directly

pecific instances canno
be passed but are
automatically selected

rule “Hello Mark”
when
Person(name == “mark”)

then
System.out.println(“Hello Mark”);

end

What is a pattern

Person(name == “mark”

) < I:I:s:;: X Restriction >

W Field Constraint >
< Pattern >

Rule's definition

// Java
publlc.clzsssﬁppllcant ? // DRL
private >tring name; declare Applicant
private int age; name :* Strin
private boolean valid; age . int)
heéé getter and setter valid : boolean
\ end

rule "Is of valid age" when

$a : Applicant(age >= 18)
then

modify($a) { valid =
true };
end

More Pattern Examples

Person(%$age : age)
Person(age == ($age + 1))

Person(age > 30 && < 40 || hair in (“black”, “brown”))
Person(pets contain $rover)

Person(pets[’rover’].type == “dog”)

Conditional Elements

not Bus(color = “red”)
exists Bus(color = “red”)
forall ($bus : Bus(color == “red”))
$owner : Person(name == “mark”)
Pet(name == “rover”) from $owner.pets
_ _ Hibernate]
$zipCode : leCOdE:'l/ session
Person() from $hbaTgetNamedQuery(“Find People”)
.setParameters([“zipCode” : $zipCode
]
from' can list()

work on any

Complex Event Processing

Event

A record of state change in the application domain
at a particular point in time

Complex Event
An abstraction of other events called its members

Complex Event Processing
Processing multiple events with the goal of
identifying
the meaningful events within the event cloud

Drools CEP

Drools modules for Complex Event Processing

Understand and handle events as a first class
platform citizen (actually special type of Fact)

Select a set of interesting events in a cloud or
stream of events

Detect the relevant relationship (patterns) among
these events

Take appropriate actions based on the patterns
detected

Cloud vs. Stream Mode

Cloud Mode (default) Stream Mode

- No notion of time - Events in each stream

> No requirement on event must be time-ordered
ordering - The engine will force

> Since they are based on synchronization between
the concept of “now” it is streams through the use of
not possible to use sliding the session clock
windows - Sliding Window support

- Not possible to determine . Aytomatic Event Lifecycle
when events can no longer Management

match, so the application
must explicitly retract
events when they are no

lAaAnAAr Nnoaracceryy

- Automatic Rule Delaying
when using Negative
Patterns

Events as Facts in Time

Te m po ra I A before B — l—l
relationships amess —
between & overlaps B . Y
events Atinishazs B ._z .ﬁ
Aincludes B ._l_. .T—l_.
rU-l.e M starts B =_. ﬁ.
"SOUnd the alarm" A coincides B ' =

when

$f : FireDetected()

not(SprinklerActivated(this after[0s,10s] $f))
then

// sound the alarm
end

Innovations in Drools 6

> A brand new engine: from ReteOO to Phreak
> From tuple based to set based propagation
> A git based repository ...

> ... combined with a maven based deployment
model

- A simplified and mostly declarative API

From ReteOO ...

Rete

Type Nodes Select Nodes

Root
Node

Facts :> ’

Alpha '
Memory - I
e Input
Alpha Network .~
" Beta Network Join Nodes
Terminal Nodes

Assertions &
Retractions

Conflict
Resolution

Agenda

... TO0 Phreak

ABDE
ABDFG

1

R1=ABC

R3
R4

R1=ABC

From tuple based to set based
nronagatinn

ROOT

EMPLOYEE
y GOAL
Constant b ®
test
nodes — &
@ CREATE-TERM HARDWARE COMPILERS
Alpha W2, W3 W&, W7
memaories Wa, W5 Wa, Wa
And-node
Beta (W1,W2) (W1, W4)
memory (W1,W3) (W1,Ws)
And-node
P-node
(W1, W2, W&) (W1, W4, wWa)
(W1, W3, W&) (W1, W5, W8)
(W1, W2, W7) (W1, W4, W9)
(W1, W3, W7) (W1, W5, W9)

EMPLOYEER
@ GOAL [

L L
@ CEEATE-TEAM HARDWARE COMPILERS
{w1} {w2,w3,wWa,ws,Wwio0) |{Ws,W7,wWws, Wo}

({Wl}, {W2,W3, W4, W5, W10})

({wi}, {w2,w3, wio}, {wWwe,wW7})

({w1}, {wa,ws}, {ws,wWa})

Advantages

- Preserves all ReteOO optimizations combining
them with pros of other well known algorithms
like Leaps, Collection Oriented Match, L/R
Unlinking ...

- On average 20% faster then ReteOO (and up to
400% faster on specific use cases)

- Reduced memory footprint
> More forgiving in presence of badly written rules

Keep innovating

Extending an Object-Oriented RETE Network

with Fine-Grained Reactivity
to Property Modifications

Mark Proctor!2, Mario Fusco?, and Davide Sottara?

Building a Hybrid Reactive Rule Engine
for Relational and Graph Reasoning

Dept. of Electrical & Electronic Engineering, Imperial College London, London

m.proctorl3@imperial.ac.uk
JBoss, a Division of Red Hat Inc.
mfusco@redhat.com

Biomedical Informatics Dept., Arizona State University, Scottsdale (AZ)

davide.sottara@asu.edu

Compile-time grouping of tuples in a streaming application
. www.google.it/patents/US20140095506

App. - Filed 21 Feb 2013 - Published 3 Apr 2014 - Michael J.
Branson - International Business Machines Corporation
... Feb 17, 2011, Mark Proctor, Pattern behavior support in

Mario Fusco! ™, Davide Sottara?(®™, Istvan R4th3, and Mark Proctor!

! A Division of Red Hat Inc., JBoss, Milan, Italy
mfusco@redhat . com
http://wwu.jboss.org
? Department of Biomedical Informatics, Arizona State University, Tempe, AZ, USA
davide.sottara@asu.edu

3 Department of Measurement and Information Systems,

Budapest University of Technology and Economics, Budapest, Hungary
rath@mit.bme.hu
* Department of Electrical and Electronic Engineering,
Imperial College London, London, UK
m.proctorl3@imperial.ac.uk

a rule engine ... 2014, Red Hat, Inc. Systems and Methods

for Efficient Just-In-Time Compilation ...
Overview - Related - Discuss

Property reactive modifications in a rete network
www.google.it/patents/US20140201124
App. - Filed 11 Jan 2013 - Published 17 Jul 2014 - Ma
Proctor - Red Hat, Inc.

A processing device executing a Rete rule engine maot
a particular property of an object ... Inventors, Mark Pr

Mario Fusco. Original Assignee, Red Hat ...
Overview - Related - Discuss

Lazily enabled truth maintenance in rule engines
www.google.it/patents/US8538905

Grant - Filed 2 Dec 2010 - Issued 17 Sep 2013 - Mark
Proctor - Red Hat, Inc.

Some embodiments of a method to lazily enable truth
maintenance in a rule engine have been presented. ... 2007,
Dec 4, 2008, Mark Proctor, Method and apparatus to define

a ruleflow ... Owner name: RED HAT, INC., NORTH
CAROLINA ...
Overview - Related - Discuss

A git/maven based workbench

Kie Workbench Application

Git Repository ﬂ

[— - — == —-—=-=-==
Project Project ﬁ

LA

©

I I — L
| d = | i
n A T Q? &/ g
l .o +— @
: | Module (kjar)
I Module (kjar)|
L e e e e e o ., KContainer

Maven Repository

Defining Kbases and KSessions

<kmodule xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins="http://jboss.org/kie/6.0.0/kmodule">

<kbase name="ServerKB" packages="org.myproject.example.server,
org.myproject.example.server.model"
eventProcessingMode="stream" equalsBehavior="identity">

<ksession name="ServerKS" default="true" />
</kbase>

<kbase name="ClientKB" packages="org.myproject.example.client">
<ksession name="StatefulClientKS" type="stateful"/>

<ksession name="StatelessClientKS" type="stateless"/>
</kbase>

</kmodule>

KieContainer kc = KieServices.Factory.get().getKieClasspathContainer();
KieSession serverKsession = kc.newKieSession("ServerKS");
KieSession clientKsession = kc.newKieSession("StatelessClientKS");

Loading a kjar from maven

<dependency>
<groupld>org.mycompany</groupld>
<artifactld>myproject</artifactld>
<version>1.0.0</version>
</dependency>

KieServices ks = KieServices.Factory.get();
KieContainer kContainer =
ks.newKieContainer(ks.newReleaseld("org.mycompany",
"myproject",
"1.0.0");
KieSession kSession = kContainer.newKieSession("ksessionl");

	Slide 1
	Drools Vision
	Slide 3
	What a rule-based program is
	Slide 5
	When should you use a Rule Engine?
	How a rule-based system works
	Rule's anatomy
	Imperative vs Declarative
	What is a pattern
	Rule's definition
	More Pattern Examples
	Conditional Elements
	Complex Event Processing
	Drools Fusion
	Slide 16
	Events as Facts in Time
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

