
by Mario Fusco
Red Hat – Senior Software Engineer
mfusco@redhat.com

Introducing

KIE – Knowledge Is Everything

A single, integrated, certified distribution for Business Rules
Management and Complex Event Processing, based on open
source community projects:

What a rule-based program is

➢ A rule-based program is made up of discrete rules,
each of which applies to some subset of the problem

➢ It is simpler, because you can concentrate on the
rules for one situation at a time

➢ It can be more flexible in the face of fragmentary or
poorly conditioned inputs

➢ Used for problems involving control, diagnosis,
prediction, classification, pattern recognition … in
short, all problems without clear algorithmic
solutions

Declarative
(What to do)

Imperative
(How to do it)Vs.

Advantages of Declarative
Programming

➢ Easier to understand → It is more likely for a technically skilled
business analyst to verify, validate or even change a rule than a
piece of Java code

➢ Improved maintainability → We don't care about how to
implement a solution only what needs to be done to solve a
problem

➢ Deals with evolving complexity → It's easier to modify a rule
than a Java program and to determine the impact of this change
on the rest of the application

➢ Modularity → Each rule models an isolated and small portion of
your business logic and is not part of a monolithic program

➢ Requirements can be more naturally translated into rules

➢ Clear separation of business logic from the rest of the
system

When should you use a Rule
Engine?

➢ The problem is beyond any obvious algorithmic
solution or it isn't fully understood

➢ The logic changes often
➢ Domain experts (or business analysts) are readily

available, but are nontechnical
➢ You want to isolate the key parts of your business

logic, especially the really messy parts

How a rule-based system works

Rule's anatomy

rule “<name>”
<attribute> <value>
when

<LHS>
then

<RHS>
end

Quotes on Rule names are
optional if the rule name has
no spaces.

salience
<int>
agenda-group
<string>
no-loop
<boolean>
auto-focus
<boolean>
duration
<long>
....

Pattern-matching
against objects in
the Working
Memory

Code executed
when a match is
found

Imperative vs Declarative

public void helloMark(Person person) {
if (person.getName().equals(“mark”) {

System.out.println(“Hello Mark”);
}

}

rule “Hello Mark”
when

Person(name == “mark”)
then

System.out.println(“Hello Mark”);
end

A method must be called
directly

Specific
passing of
arguments

Rules can never be called
directly

Specific instances cannot
be passed but are
automatically selected
with pattern-matching

What is a pattern

Person(name == “mark”
)

Pattern

Object
Type

Field Constraint

Field
Name

Restriction

Rule's definition

// Java
public class Applicant {
 private String name;
 private int age;
 private boolean valid;
 // getter and setter

here
}

rule "Is of valid age" when
 $a : Applicant(age >= 18)
then
 modify($a) { valid =
true };
end

// DRL
declare Applicant
 name : String
 age : int
 valid : boolean
end

More Pattern Examples

Person($age : age)

Person(age == ($age + 1))

Person(age > 30 && < 40 || hair in (“black”, “brown”))

Person(pets contain $rover)

Person(pets[’rover’].type == “dog”)

Conditional Elements

not Bus(color = “red”)

exists Bus(color = “red”)

forall ($bus : Bus(color == “red”))

$owner : Person(name == “mark”)

 Pet(name == “rover”) from $owner.pets

$zipCode : ZipCode()

Person() from $hbn.getNamedQuery(“Find People”)

 .setParameters([“zipCode” : $zipCode
])

 .list()

Hibernate
session

'from' can
work on any
expression

Complex Event Processing

Event
A record of state change in the application domain

at a particular point in time

Complex Event
An abstraction of other events called its members

Complex Event Processing
Processing multiple events with the goal of

identifying
the meaningful events within the event cloud

Drools CEP

➢ Drools modules for Complex Event Processing
➢ Understand and handle events as a first class

platform citizen (actually special type of Fact)
➢ Select a set of interesting events in a cloud or

stream of events
➢ Detect the relevant relationship (patterns) among

these events
➢ Take appropriate actions based on the patterns

detected

Cloud vs. Stream Mode

Cloud Mode (default) Stream Mode

➢ No notion of time
➢ No requirement on event

ordering
➢ Since they are based on

the concept of “now” it is
not possible to use sliding
windows

➢ Not possible to determine
when events can no longer
match, so the application
must explicitly retract
events when they are no
longer necessary

➢ Events in each stream
must be time-ordered

➢ The engine will force
synchronization between
streams through the use of
the session clock

➢ Sliding Window support
➢ Automatic Event Lifecycle

Management
➢ Automatic Rule Delaying

when using Negative
Patterns

Events as Facts in Time

rule
 "Sound the alarm"
when
 $f : FireDetected()
 not(SprinklerActivated(this after[0s,10s] $f))
then
 // sound the alarm
end

Temporal
relationships

between
events

Innovations in Drools 6

➢ A brand new engine: from ReteOO to Phreak
➢ From tuple based to set based propagation
➢ A git based repository …
➢ … combined with a maven based deployment

model
➢ A simplified and mostly declarative API

From ReteOO ...

… to Phreak

From tuple based to set based
propagation

Advantages

➢ Preserves all ReteOO optimizations combining
them with pros of other well known algorithms
like Leaps, Collection Oriented Match, L/R
Unlinking ...

➢ On average 20% faster then ReteOO (and up to
400% faster on specific use cases)

➢ Reduced memory footprint
➢ More forgiving in presence of badly written rules

Keep innovating

Project

Kie Workbench Application

Maven Repository

Project

KContainer
Module (kjar) Module (kjar)

Module (kjar)

Git Repository

A git/maven based workbench

Defining Kbases and KSessions
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://jboss.org/kie/6.0.0/kmodule">

 <kbase name="ServerKB" packages="org.myproject.example.server,
 org.myproject.example.server.model"
 eventProcessingMode="stream" equalsBehavior="identity">
 <ksession name="ServerKS" default="true" />
 </kbase>

 <kbase name="ClientKB" packages="org.myproject.example.client">
 <ksession name="StatefulClientKS" type="stateful"/>
 <ksession name="StatelessClientKS" type="stateless"/>
 </kbase>
</kmodule>

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://jboss.org/kie/6.0.0/kmodule">

 <kbase name="ServerKB" packages="org.myproject.example.server,
 org.myproject.example.server.model"
 eventProcessingMode="stream" equalsBehavior="identity">
 <ksession name="ServerKS" default="true" />
 </kbase>

 <kbase name="ClientKB" packages="org.myproject.example.client">
 <ksession name="StatefulClientKS" type="stateful"/>
 <ksession name="StatelessClientKS" type="stateless"/>
 </kbase>
</kmodule>

KieContainer kc = KieServices.Factory.get().getKieClasspathContainer();
KieSession serverKsession = kc.newKieSession("ServerKS");
KieSession clientKsession = kc.newKieSession("StatelessClientKS");

KieContainer kc = KieServices.Factory.get().getKieClasspathContainer();
KieSession serverKsession = kc.newKieSession("ServerKS");
KieSession clientKsession = kc.newKieSession("StatelessClientKS");

Loading a kjar from maven

<dependency>
 <groupId>org.mycompany</groupId>
 <artifactId>myproject</artifactId>
 <version>1.0.0</version>
</dependency>

<dependency>
 <groupId>org.mycompany</groupId>
 <artifactId>myproject</artifactId>
 <version>1.0.0</version>
</dependency>

KieServices ks = KieServices.Factory.get();
KieContainer kContainer =
 ks.newKieContainer(ks.newReleaseId("org.mycompany",
 "myproject",
 "1.0.0"));
KieSession kSession = kContainer.newKieSession("ksession1");

KieServices ks = KieServices.Factory.get();
KieContainer kContainer =
 ks.newKieContainer(ks.newReleaseId("org.mycompany",
 "myproject",
 "1.0.0"));
KieSession kSession = kContainer.newKieSession("ksession1");

	Slide 1
	Drools Vision
	Slide 3
	What a rule-based program is
	Slide 5
	When should you use a Rule Engine?
	How a rule-based system works
	Rule's anatomy
	Imperative vs Declarative
	What is a pattern
	Rule's definition
	More Pattern Examples
	Conditional Elements
	Complex Event Processing
	Drools Fusion
	Slide 16
	Events as Facts in Time
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

